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1 Counting Empirical Distributions Close to a Given Distri-
bution

1.1 Easier upper bound for the size of a type class

Recall our setting: A is a finite alphabet, and for x ∈ An, px(a) = |{i≤n:xi=a}|
n is the

empirical distribution. The type class is

Tn(p) = {x ∈ An : px = p}.

Last time, we used Stirling’s approximation to show that |Tn(p)| = eH(p)n+o(n), where
H(p) = −

∑
a p(a) log p(a).

Today we will focus on a variant of the question: counting how many empirical dis-
tributions are close to p. We will prove an alternative proof that |Tn(p)| ≤ eH(p)n, the
arguments for which will help us in the later analytic case when there is no exact answer.

Proposition 1.1. |Tn(p)| ≤ eH(p)n.

Proof. Choose X ∈ An at random with iid p coordinates, i.e. the law of x is p×n. Given
x ∈ Tn(p), then

P(X = x) =
n∏
i=1

p(xi)

= exp

(
n∑
i=1

log p(xi)

)

= exp

(∑
a

px(a) · n · log p(a)

)

= exp

(
n
∑
a

p(a) log p(a)

)
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= e−H(p)n.

So
1 ≥ P(x ∈ Tn(p)) =

∑
x∈Tn(p)

P(X = x) = |Tn(p)|e−H(p)n.

Remark 1.1. It’s also true that |Tn(p)| ≥ eH(p)n−o(n) if p(a) ∈ N/n for all a.

1.2 Asymptotic analysis of number of empirical distributions close to p

Next, we estimate the size of

Tn,δ(p) = {x ∈ An : ‖px − p‖ < δ}.

Proposition 1.2. For any ε > 0 and p ∈ P (A), there is a δ0 > 0 such that for all
δ ∈ (0, δ0), we have

eH(p)n−εn−o(n) ≤ |Tn,δ(p)| ≤ eH(p)n+εn+o(n).

Proof. (Upper bound):

Tn,δ(p) =
⋃

‖q−p‖<δ
nq(a)∈N ∀a

Tn(q),

so

|Tn,δ(p)| ≤
∑
q

|Tn(q)| ≤
∑
q

eH(q)n.

H is continuous on P(A), so there exists a δ0 such that ‖q−p‖ < δ0 =⇒ H(q) < H(p)+ε,
and then

|Tn,δ(p)| ≤ eH(p)n+εn|{q ∈ P (A) : ‖q − p‖ < δ, nq(a) ∈ N ∀a}|
≤ (n+ 1)|A|eH(p)n+εn

= eH(p)n+εn+o(n).

(Lower bound): If X ∼ p×n, so

P(X ∈ Tn,δ(p)) = P

(∑
a

|pX(a)− p(a)| < δ

)

= P

(∑
a

∣∣∣∣ |{i : Xi = a}|
n

− p(a)

∣∣∣∣ < δ

)
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= P

(∑
a

∣∣∣∣
∑n

i=1 1{Xi=a}

n
− p(a)

∣∣∣∣ < δ

)
.

The 1{Xi=a} are iid Bernoulli random variables with mean p(a), so by the Weak Law of
Large Numbers, this stays < δ/|A| with high probability as n → ∞. So this probability
equals 1− o(1). So we must have∑

x∈Tn,δ(p)

P(X = x)︸ ︷︷ ︸
=e−n

∑
a px(a) log p(a)

= 1− o(1).

Observe that for any ε > 0, there exists a δ such that ‖px−p‖ < δ =⇒
∑

a px(a) log p(a) ≤∑
a p(a) log p(a) + ε. So for this δ, we get

|Tn,δ(p)|e−H(p)n+εn ≥ P(X ∈ Tn,δ(p)) = 1− o(1),

and so |Tn,δ(p)| ≥ eH(p)n−εn−o(n).

1.3 Superadditivity and convexity arguments for counting type classes
of sets

What we’ve done is specify a ball in the space of empirical distributions and calculated
how many distributions end up in the ball. Here is an approach that does not rely on an
exact answer. Given U ⊆ P (A), let Tn(U) = {x ∈ An : px ∈ U} and Sn(U) := log |Tn(U)|.
Here is a key fact.

Proposition 1.3. If U is convex, then Sn+m(U) ≥ Sn(U) +Sm(U) for all n,m; i.e. S·(U)
is superadditive.

Proof. Suppose x ∈ Tn(U) and y ∈ Tm(U). Then

p(x,y)(a) =
n

n+m
px(a) +

m

n+m
py(a),

so p(x,y) ∈ U by convexity of U . So Tn(U) × Tm(U) ⊆ Tn+m(U). This gives |Tn(U)| ·
|Tm(U)| ≤ |Tn+m(U)|. Now take log.

Lemma 1.1 (Fekete). Suppose an ∈ R for all n is superadditive: an+m ≥ an + am. Then

lim
n

an
n

= sup
n

an
n
∈ (−∞,∞].

Proof. By iterating this condition, an ≥ na1 for all n. Rearrange this to an/n ≥ a1 for all
n. Now suppose that c < supn an/n. We will show that an/n > c for all sufficiently large
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n. Choose m such that am/m > c. Now consider n � m such that n = km + p, where
k ≥ 1 and 0 ≤ p < m. Then an ≥ kam + ap, so

an
n
≥ k

km+ p
am +

p

km+ p
a1 =

km

km+ p︸ ︷︷ ︸
n→∞−−−→1

am
m︸︷︷︸
>c

+
p

km+ p︸ ︷︷ ︸
n→∞−−−→0

a1.

Corollary 1.1. If U ⊆ P (A) is convex, then S(U) := limn
1
nSn(U) exists; i.e. |Tn(U)| =

eS(U)n+o(n).

Next, we will derive properties of S.

Lemma 1.2. If U ⊆ V , then S(U) ≤ S(V ).

Here is somewhat of an improvement:

Lemma 1.3. If U ⊆ U1 ∪ · · · ∪ Uk, then S(U) ≤ maxi S(Ui).

Proof.

|Tn(U)| ≤
∑
i

|Tn(Ui)| ≤ k ·max
i
|Tn(Ui)|,

so
1

n
Sn(U) ≤ log k

n
+ max

i

1

n
Sn(Ui).

Now let n→∞.

How can a function of convex sets U be like this?

Example 1.1. Let S̃ : P (A)→ R be continuous, and let S(U) = sup{S̃(p) : p ∈ U}. This
example will have the property in the above lemma.

Next time, we will give conditions on S for it to have this form. When we come to the
analytic case, we will be able to repeat this analysis without needing to know the exact
value of S.
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