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1 Counting Empirical Distributions Close to a Given Distri-
bution

1.1 Easier upper bound for the size of a type class

Recall our setting: A is a finite alphabet, and for x € A", p,(a) = W is the
empirical distribution. The type class is

To(p) ={xe€ A" : p, = p}.
Last time, we used Stirling’s approximation to show that |T,,(p)| = e®)+o()  where

H(p) = — >, p(a)logp(a).

Today we will focus on a variant of the question: counting how many empirical dis-
tributions are close to p. We will prove an alternative proof that |T,(p)| < eff )" the
arguments for which will help us in the later analytic case when there is no exact answer.

Proposition 1.1. |T,,(p)| < @),

Proof. Choose X € A™ at random with iid p coordinates, i.e. the law of x is p*". Given
x € Ty, (p), then



— ¢ H)n,

So
1>P(xeTyip) = Z P(X =) = |Tn(p)|e H®". =
€T (p)

Remark 1.1. It’s also true that |T,(p)| > eff®)n=0() if p(a) € N/n for all a.

1.2 Asymptotic analysis of number of empirical distributions close to p

Next, we estimate the size of

Ths(p) = {z € A" : |lpz — pll <0}

Proposition 1.2. For any € > 0 and p € P(A), there is a 69 > 0 such that for all
0 € (0,d0), we have

eH(p)n—sn—o(n) < |Tn,6(p)‘ < eH(p)n—O—en—&—o(n)‘
Proof. (Upper bound):
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H is continuous on P(A), so there exists a dy such that ||¢g—p|| < do = H(q) < H(p) +¢,
and then

|T,5(p)| < eTPn¥en|{g € P(A) 1 |lg — p|| < 3,nq(a) € NVa}|

_ Hpntento(n),

(Lower bound): If X ~ p*™ so
P(X € T, 5(p)) =P <Z Ipx(a) —pla)| < 5)
:P<Z [{i: Xi = a}| —p(a)‘ <5>
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The 1x,—q are iid Bernoulli random variables with mean p(a), so by the Weak Law of
Large Numbers, this stays < ¢/|A| with high probability as n — oco. So this probability
equals 1 — o(1). So we must have

> P(X =2) =1-o0(1).

2€T5,5(P) _ —n', pe(a) log pla)

Observe that for any € > 0, there exists a § such that ||p, —p|| <§ = >, pz(a)logp(a) <
> ap(a)logp(a) 4+ e. So for this J, we get

[ Ts(p)le™ TP > P(X € T, 5(p)) = 1 = o(1),

and so [Ty, 5(p)| > efl(PIn—en—o(n), O

1.3 Superadditivity and convexity arguments for counting type classes
of sets

What we’ve done is specify a ball in the space of empirical distributions and calculated
how many distributions end up in the ball. Here is an approach that does not rely on an
exact answer. Given U C P(A), let T,,(U) ={z € A" : p, € U} and S, (U) := log |T,,(U)|.
Here is a key fact.

Proposition 1.3. If U is convez, then Sp1m(U) > Sp(U)+ Sy (U) for alln,m; i.e. S.(U)
1s superadditive.

Proof. Suppose x € T,,(U) and y € T,,(U). Then

Play) (@) = T pela) + py(a),

n4+m n+m
80 P(z) € U by convexity of U. So T, (U) X Tin(U) € Tyym(U). This gives |T,(U)] -
| T (U)| < |Thtm(U)|. Now take log. O
Lemma 1.1 (Fekete). Suppose a, € R for all n is superadditive: anim > an + am. Then
a an,

lim — = sup — € (—00,00].
non n n

Proof. By iterating this condition, a, > na; for all n. Rearrange this to a,/n > a; for all
n. Now suppose that ¢ < sup,, a,/n. We will show that a,/n > c for all sufficiently large



n. Choose m such that a,,/m > c¢. Now consider n > m such that n = km + p, where
k>1and 0 <p<m. Then a, > kay,, + ap, so

QJZ k P km  apn P

n o map ™ T kmap™ T kmap m T kmap”
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Corollary 1.1. IfU C P(A) is convez, then S(U) := lim,, 25, (U) ezists; i.e. |T,(U)| =
S(U)n+o(n)
e .

Next, we will derive properties of S.
Lemma 1.2. IfU CV, then S(U) < S(V).
Here is somewhat of an improvement:

Lemma 1.3. IfU CU; U---UUy, then S(U) < max; S(U;).

Proof.
T (U)] <> | T(Us)| < k- max [T, (Us)],
SO
lSn(U) < log & + maxlSn(Ui).
n i on
Now let n — oo. O

How can a function of convex sets U be like this?

Example 1.1. Let S : P(A) — R be continuous, and let S(U) = sup{S(p) : p € U}. This
example will have the property in the above lemma.

Next time, we will give conditions on S for it to have this form. When we come to the
analytic case, we will be able to repeat this analysis without needing to know the exact
value of S.
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